The generator matrix

 1  0  1  1  1 X^2+X  1  1  0  1  1 X^2+X  1  1  0  1  1 X^2+X  1 X^2  1  1  1 X^2+X  1  1  X  1  0  1  1  1  0  1  1  1 X^2  1  X  1  1  1 X^2  1  1  X
 0  1 X+1 X^2+X  1  1  0 X+1  1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1 X^2  1 X+1 X^2+1 X^2+X  1 X^2+X+1  X  1  0  1 X^2+1 X^2+1  0  1  0 X^2 X^2+1  1  1  X X+1 X^2+X+1 X^2+1  0 X^2 X^2+X  0
 0  0 X^2  0  0  0  0  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2  0  0  0 X^2  0
 0  0  0 X^2  0  0  0  0 X^2 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0 X^2  0  0 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2  0 X^2  0  0  0 X^2 X^2  0
 0  0  0  0 X^2  0  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2 X^2  0  0  0 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0 X^2  0 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0
 0  0  0  0  0 X^2 X^2 X^2 X^2  0  0 X^2  0  0 X^2 X^2 X^2  0 X^2  0 X^2  0  0 X^2 X^2  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2

generates a code of length 46 over Z2[X]/(X^3) who�s minimum homogenous weight is 41.

Homogenous weight enumerator: w(x)=1x^0+72x^41+103x^42+82x^43+88x^44+100x^45+142x^46+130x^47+88x^48+64x^49+67x^50+38x^51+11x^52+20x^53+5x^54+6x^55+3x^56+2x^58+1x^60+1x^62

The gray image is a linear code over GF(2) with n=184, k=10 and d=82.
This code was found by Heurico 1.16 in 22.4 seconds.